'G' Scheme

WITH EFFECT FROM 2012-13

DURATION : 16 WEEKS

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION, MUMBAI

TEACHING AND EXAMINATION SCHEME FOR POST S.S.C. DIPLOMA COURSES

COURSE NAME : DIPLOMA IN CHEMICAL ENGINEERING

COURSE CODE : CH

DURATION OF COURSE : 6 SEMESTERS

SEMESTER : FIFTH

PATTERN : FULL TIME - SEMESTER										SCH	EME	: G				
съ		Abbaunt CUD TE			TEACHING				EXAMINATION SCHEME							CW
SK. NO	SUBJECT TITLE	ADDrevi	CODE	S	CHEM	E	PAPER	ТН	(1)	PR	(4)	OR	(8)	TW	(9)	5 W (17500)
		ation	CODE	ТН	TU	PR	HRS.	Max	Min	Max	Min	Max	Min	Max	Min	(17500)
1	Plant Safety & Maintenance	PSM	17558	03		1	03	100	40	-						
2	Energy Management		17559	03		02	03	100	40		-			25@	10	
3	Heat Transfer Operation		17560	03		04	03	100	40	50#	20			25@	10	
4	Chemical Process Instrumentation and Control	CPI	17561	03		02	03	100	40	50#	20			25@	10	
5	Chemical Reaction Engineering	CRE	17562	03	01		03	100	40							50
6	Behavioural Science \$	BSC	17075	01		02						25#	10	25@	10	
7	Entrepreneurship Development and Industrial Project	EDI	17073	01	01	02								25@	10	
8	Professional Practices - III / Industrial Training (Optional)**	PPT	17074			03								50@	20	
			TOTAL	17	02	15		500		100		25		175		50

Student Contact Hours Per Week: 34 Hrs.

THEORY AND PRACTICAL PERIODS OF 60 MINUTES EACH.

Total Marks : 850

No Theory Examination, \$ - Common to all branches, #* - Online Theory Examination. (a) - Internal Assessment, # - External Assessment, ** Students who have done Industrial Training of four week after fourth semester examination during summer vacation will be exempted from some of the activities of Professional Practices-III of fifth Semester and Assessment of Industrial Training will be done in fifth semester under Professional Practices-III Abbreviations: TH-Theory, TU-Tutorial, PR-Practical, OR-Oral, TW-Term Work, SW-Sessional Work

- > Conduct two class tests each of 25 marks for each theory subject. Sum of the total test marks of all subjects is to be converted out of 50 marks as sessional work (SW).
- > Progressive evaluation is to be done by subject teacher as per the prevailing curriculum implementation and assessment norms.
- Code number for TH, PR, OR, TW are to be given as suffix 1, 4, 8, 9 respectively to the subject code.

Course Name : Diploma in Chemical Engineering Course code : CH Semester : Fifth Subject Title : Plant Safety and Maintenance Subject Code : 17558

Teaching and Examination Scheme:

Teaching Scheme					Examinati	on Scheme		
TH	TU	PR	PAPER HRS.	TH	PR	OR	TW	TOTAL
03			03	100				100

NOTE:

- > Two tests each of 25 marks to be conducted as per the schedule given by MSBTE.
- > Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work (SW).

Rationale:

In the chemical process industry plant safety is important. Knowledge of plant safety is essential to prevent accidents and damages while working in plant. Maintenance of plant and machinery is one of the most important aspects of process industry. This subject deals with safe practices, various types of maintenance and their significance.

General Objectives:

The students will be able to

- 1. Describe the safety procedures to be observed while working in a plant.
- 2. Identify types of hazards associated in a chemical process industry.
- 3. Prepare safety audit report & safety report.
- 4. Explain procedure for preventive maintenance, on-line maintenance, shut down maintenance.

Theory:

Plant Hazards Specific Objectives : > Study different hazards associated with the Chemical industries and their Control Methods. > Study the Preventive Methods for different hazards. > Study the hazards associated with Cl2, NH3, H2SO4 Content: 08 Marks Industrial hazards due to process & its precautions.	18
 Specific Objectives : Study different hazards associated with the Chemical industries and their Control Methods. Study the Preventive Methods for different hazards. Study the hazards associated with Cl2, NH3, H2SO4 Content: Industrial hazards 08 Marks Industrial hazards due to process & its precautions. 10 	18
 Study different hazards associated with the Chemical industries and their Control Methods. Study the Preventive Methods for different hazards. Study the hazards associated with Cl2, NH3, H2SO4 Content: Industrial hazards Industrial hazards due to process & its precautions. 	18
 Study the Preventive Methods for different hazards. Study the hazards associated with Cl2, NH3, H2SO4 Content: Industrial hazards Industrial hazards due to process & its precautions. 	18
 Study the Preventive Methods for different hazards. Study the hazards associated with Cl2, NH3, H2SO4 Content: Industrial hazards Industrial hazards due to process & its precautions. 	18
 Study the hazards associated with Cl2, NH3, H2SO4 Content: Industrial hazards 08 Marks Industrial hazards due to process & its precautions. 	18
Content:1.1Industrial hazards08 Marks1•Industrial hazards due to process & its precautions.10	18
Content:1.1Industrial hazards08 Marks1•Industrial hazards due to process & its precautions.10	18
1.1Industrial hazards08 Marks1• Industrial hazards due to process & its precautions.10	18
• Industrial hazards due to process & its precautions.	18
	10
Plant Safety provisions	
 Electrical hazards - Common Sources precautions 	
 Mechanical hazards 	
1 2 10 Marks	
 Explosion bazards - Classification of explosives 	
nrecautions while handling explosives	
 Radiation hazards – Health hazards of infrared radiation & 	
X rays	
Noise bazard Sources protection	
 Chemical hazard - bazards due to NHa Cla HaSO. 	
Personal Protective equipments	
Specific Objectives:	
 Study the working of different respiratory equipments 	
 Understand the selection of proper respiratory device 	
Draw and Study various non respiratory personal protective	
devices.	
$\frac{2}{05}$	14
• Respiratory protective equipment - Air purifier type,	
supplied air type, Self contained breathing apparatus,	
Selection of proper devices.	
• Non respiratory personal protective equipment - Eye &	
face, ear, head, torso & body, hand, foot & leg protection.	
Fire Prevention	
Specific Objectives:	
State causes of fire	
Classify types of fire & suggest suitable type of fire	
extinguisher	
3 96	16
Content:	10
• Types of fire, fire triangle, Principle of extinguish of fire.	
• Classification of fire and suitable type of extinguisher	
Principle, Construction & working of following fire	
extinguisher – Soda Acid type, Foam type, Dry Chemical	
powder. Fire buckets and Fire hydrant	
Storage & Transportation of Unemicals	19
Specific Objectives. State different methods of storage	10

	Draw various conveyors.		
	State transport requirements of hazardous Chemicals.		
	Content:		
	4.1 Methods of Storage 08 Marks		
	Bulk storage, bin storage, underground storage, liquid storage, gas		
	storage;		
	 Storage of flammable & combustible liquid chemicals shock sensitive chemicals. 		
	• Packing of solids - bags boxes drum container		
	• Vibrating hopper Screw feeder		
	4 2 10Marks		
	• Functions & Principles of material handling		
	 Functions & Efficience of sarow conveyor balt conveyor 		
	• Construction & working of screw conveyor, beit conveyor, bucket elevator (Spaced bucket positive discharge),		
	 Pneumatic conveyor - (Positive, negative) 		
	 Wooden pallets for unit load. 		
	 Transportation of hazardous Chemicals - Flammable 		
	liquids, corrosives or oxidizing materials, water reactive		
	chemicals, igniting substances, toxic chemicals.		
	Safety Audit		
	Specific Objectives:		
5	State objective of safety audit.	04	06
5	Describe the procedure for safety auditing.	04	00
	Content:		
	Objectives of safety audit, procedure for safety auditing.		
	Plant Maintenance		
	Specific Objectives:		
	State objectives of plant maintenance.		
	Describe functions and responsibilities of plant maintenance		
	department.		
	Content:		
6	6.1 Objectives of plant maintenance functions & responsibilities of	14	28
	plant maintenance department. 06 Marks		
	6.2 Types of maintenance 12 Marks		
	Corrective or breakdown maintenance, Scheduled maintenance,		
	Preventive maintenance, Predictive maintenance,		
	6.3 Online maintenance 10 Marks		
	(eg. Rota meter/ Steam trap), Shut down maintenance,		
	Procedure for shutdown & start up of plant.		
	Total	48	100

Learning Resources: Books:

Sr. No.	Name of Book	Name of Author	Name of Publisher
1	Safe Handling of Hazardous Chemicals	A. K. Rohatgi	J. K. Entrprises
2	Safety & Accident Prevention in Chemical	H. H. Foucet & W. S. wood	Inter Science Publication, John Willey & Sons

w.e.f Academic Year 2012-13

	operation		
3	Safety in Process Plant Design	G. L. Wells	John Willey & Sons
4	Plant Maintenance	S. S. Apte	Delhi Productivity Council
5	Maintenance Engineer Handbook	C. L. Morrow	McGraw Hill Publication

Course Name : Diploma in Chemical EngineeringCourse Code : CHSemester : FifthSubject Title : Energy ManagementSubject Code : 17559

Teaching and Examination Scheme:

Teaching Scheme					Examinati	on Scheme		
TH	TU	PR	PAPER HRS	TH	PR	OR	TW	TOTAL
03		02	03	100			25@	125

NOTE:

- > Two tests each of 25 marks to be conducted as per the schedule given by MSBTE.
- > Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work (SW).

Rationale:

Today commercial energy sources are limited and putting great burden on nation and industries. Energy management is important industrial and commercial activity which will help to reduce this burden. This subject will equip the students with knowledge of energy types and its use. Energy conservation method and energy audit methodology are also studied.

General Objectives:

The students will be able to:

- 1. Know various forms of energy
- 2. Understand various types of energy conservation methods
- 3. Apply method of energy auditing.
- 4. Understand the use of energy in various equipment
- 5. Know different types of renewable energy sources.

Theory:

Chapter	Topics and Contents	Hours	Marks	
1	Topics and contents Energy Scenario Specific Objectives : > Classify sources of energy > Describe energy security measures > State salient features of EC act 2001 Content: • Primary and Secondary Energy Sources • Commercial and Noncommercial energy sources • Global Primary Energy Reserves • Indian energy scenario • Energy Security • Energy Conservation and its Importance • Features of Perform Achieve & Trade- PAT scheme • Salient features of EC act 2001	06	12	
2	 Basic of Energy Specific Objectives: Give examples of modes of heat transfer Calculate energy content in fuel Calculate power factor Content: Concept of Calorific value, Specific heat, Modes of heat transfer, Combustion (concept and calculations)- Basics of combustion, 3 T's of combustion, Stoichiometry of combustion, Excess air in combustion Fuels- Types and examples of fuel, Properties of fuel, Storage of fuel Electrical Energy (Concept and calculations)- DC and AC, Power factor, Energy demand Electricity generation from thermal power plant (concept and block diagram) 	08	16	
3	 Energy Audit Specific Objectives: State necessity of energy audit Compare energy utilization for given product Suggest ENCON recommondation Content: Concept of energy audit Need for energy audit Types of energy audit-Preliminary & Detailed Energy audit instruments Structure of Audit report Energy benchmarking 	10	20	

		1	
	ENCON recommendation		
	• Simple payback period (definition and calculation)		
	Energy Efficiency in Thermal and Electrical Utilities		
	Specific Objectives:		
	Calculate efficiency of boiler by direct method		
	Describe steps for efficiency calculation		
	State steps for performance assessment of heat exchanger		
	Calculate specified power for pump		
	<u>Content:</u> Dailars		
	Dollets		
	• Types of boner – sanent reatures of fire tube, water tube,		
	Deiler eveneration ratio		
	 Bonel evaporation failo Efficiency coloulation by direct method 		
	• Efficiency calculation by direct method		
	• Advantages and disadvantages of direct method		
	• Steps to check performance assessment of boiler		
	• Energy conservation measures in boiler		
	Heat Exchangers		
	• Concept of heat exchanger		
	• Types of heat exchangers - by construction and flow		
4	• LMID	14	32
	• Overall heat transfer coefficient		
	• Steps to check performance assessment of heat exchanger		
	Pumps		
	• Working of centrifugal Pump		
	Pump performance		
	• Hydraulic, shaft and electrical input power		
	Pump operating point		
	• Effect of oversizing pump		
	• Energy loss in throttling		
	• NPSH		
	• Effect of speed variation, impeller trimming		
	• Performance assessment of pump (only method)		
	• Energy conservation opportunities in pump		
	Cooling tower		
	• Types of cooling tower		
	Components of cooling tower		
	Cooling tower performance		
	• Efficient system operation		
	Energy saving opportunities		
	Non-Conventional Energy Sources		
	Specific Objectives.		
	 Describe method of generating electricity by solar thermal 		
5	energy	10	20
	 Calculate power available in wind 		
	 Compare conventional and non-conventional energy on 		
	given point		

Content:		
Solar energy		
Solar constant		
Solar insolation		
• Solar water heater – construction and working flat plate		
collector		
• Solar thermal energy		
• Solar photovoltaic energy		
• Construction and working of box type and parabolic solar		
cooker		
Wind Energy		
Wind Generation		
Power available in wind		
Components of wind mill		
Capacity factor		
Biomass energy		
• Types of biomass		
Direct combustion of biomass		
Gasification of biomass		
 Construction and working of Biogas plant 		
• Biofuels- types, raw material and use		
Concept of fuel cell		
Concept of wave and tidal energy		
Concept of geothermal energy		
Comparison of conventional and non-conventional energy		
Total	48	100

Practical:

Intellectual Skills

- 1) Follow standard method of energy audit.
- 2) Select proper instrument and its location for measuring the parameter.

Motor Skill:

- 1) Handle instrument properly.
- 2) Measure parameters accurately.

List of Practicals:

Note: Following practicals can be conducted in group of 4 students

- 1) Compare intensity of light using lux meter in given rooms with standard values
- 2) Use of contact/ non-contact tachometer to measure rpm of given motor
- 3) Find out energy consumption of given appliances (computer, heater, microwave, refrigerator, etc.) using wattmeter and compare it with rated values
- 4) Compare heat loss from insulated and non-insulated furnace or oven or equipment or pipe.
- 5) Compare efficiency of box and parabolic solar cooker in terms of temp attained.
- 6) Calculate energy efficiency of shell and tube heat exchanger
- 7) Calculate energy efficiency of double pipe heat exchanger
- 8) Calculate energy efficiency of finned tube heat exchanger
- 9) Calculate losses when transfer of heat takes place from steam or hot water to cold water.
- 10) Calculate range and approach in cooling tower.

Learning Resources: 1. Books:

Sr. No.	Name of Book	Name of Author	Name of Publisher
1	Guide book for Nation Certification Examination for Energy Managers & Energy Auditors Book 1 to 4	BEE	available at www.energymanagertraining.com
2	Energy Management Handbook	W.C. Turner	The Fairmont Press

2. Web Source

(i) www.bp.com/centres/energy.

(ii) www.epa.org

(iii) www.calculator.org/properties.html

(iv) www.eeca.govt.nz

(v) www.energyusernews.com/

(vi) www.bce-india.nic.in

(vii) www.bp.com/statisticalreview

Course Name : Diploma in Chemical EngineeringCourse Code : CHSemester : FifthSubject Title : Heat Transfer OperationSubject Code : 17560

Teaching and Examination Scheme:

Teaching Scheme					Examinati	on Scheme		
TH	TU	PR	PAPER HRS	TH	PR	OR	TW	TOTAL
03		04	03	100	50#		25@	175

NOTE:

- > Two tests each of 25 marks to be conducted as per the schedule given by MSBTE.
- > Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work (SW).

Rationale:

This subject intends to equip the students with the concept and principles of heat transfer operations, which are of prime importance in any chemical industry. It will develop the skills of logical thinking of control of various parameters, which affect the operations by which an overall control of the equipment can be achieved.

General Objectives:

The students will be able to

- 1. Understand basic modes, mechanism and laws of heat transfer
- 2. Understand concept of overall and individual heat transfer coefficient.
- 3. Apply basic equations to calculate rate of heat transfer.
- 4. Know working of different heat transfer equipments.
- 5. Know working of different evaporators.

Content: Theory

Chapter	Торіс	Hours	Marks
	Conduction		
	Specific Objectives:		
	> Derive equations to calculate rate of heat transfer through flat		
	wall, cylinder & sphere		
	> Calculate rate of heat transfer through flat wall, cylinder &		
	sphere		
	-p		
	Content:		
	1 1 08 Marks		
	 Modes of heat transfer definition with examples 		
1	 Modes of heat transfer - definition with examples Equipres a law statement mathematical expression 	10	18
	• Fourier's law - statement, mathematical expression		
	• Thermal conductivity - definition, relation with temperature		
	• Description of steady state conduction		
	 Derivation of rate of heat flow by conduction through 		
	rectangular block, composite wall & numericals		
	1.2 10 Marks		
	• Derivation of rate of heat flow through cylinder, sphere &		
	numericals		
	• Study of variation of thermal conductivity with temperature		
	 ontimum thickness of insulation - concept & definition 		
	Convection		
	Snecific Objectives:		
	Derive relation between film coefficient & overall heat		
	transfer coefficient		
	\sim Calculate overall heat transfer coefficient & area of heat		
	rongfor		
	Describe heat transfer coefficient in bailing liquid k		
	Describe field transfer coefficient in bonning inquid &		
	Contentsing vapour		
	Content:		
	• Natural & forced convection – definition & example		
	• Film coefficient – concept, definition and unit		
	• Derivation of overall heat transfer coefficient from hot fluid		
2	to cold fluid through metal wall. Effect of surface coefficient	14	26
2	on overall heat transfer coefficient	14	50
	• Dimensional analysis for heat transfer for understanding the		
	use of Reynold's number, prandtl number, Nusselt number		
	and Grashoff number in calculating film coeffitient		
	• Calculating heat transfer coefficient in laminar & turbulent		
	flow by Dittus –Bolter & Sider Tate equation		
	2.2 18 Marks		
	• Co-current & counter current heat flow- concept schematic		
	representation & comparison		
	• Concept of Log Mean Temp Difference derivation &		
	numericals based on this		
	 Boiling definition of saturated need boiling boiling survey 		
	• Donnig – definition of saturated pool bonning, bonning curve,		
	Study of finit boining, nucleate boining & transition boining		
1	• Condensation – definition,		

	Dropwise & filmwise condensation – definition & relative		
	merits & demerits, effect of vertical & horizontal heat		
	transfer surface on heat transfer coefficient		
	Radiation		
	Specific Objectives:		
	Describe basic laws of radiation		
	Calculate rate of heat radiated between two surfaces		
	Content:		
	Radiation- Definition & examples		
_	• Definition of absorptivity, reflectivity and transmissivity		
3	• Laws of radiation- statement & mathematical expression of	03	08
	Plank's Law, Wien's displacement law, Stefan Boltzman law		
	• Definition, mathematical expression & description of		
	Kirchoff's law		
	• Mathematical expression for rate of radiation between two		
	surfaces, numericals based on that		
	• Definition of black body, Gray body, emissivity, Emissive		
	Power Hoot Transfor Equipment		
	Specific Objectives:		
	Draw different types of heat exchanger		
	 Compare single & multipass heat exchangers 		
	calculate area of heat exchangers		
	Content:		
	• Different heat transfer equipment in chemical industry-		
	names & uses		
	• Double pipe Heat Exchangers- Diagram, construction,		
	working		
1	 Shell & Tube Heat Exchanger- Diagram, construction, 	10	16
4	working of different types	10	10
	Single pass & multipass heat exchangers- Working& comparison		
	• Diagram of $1, 2, k, 2, 4$ heat exchanger		
	 Diagram of 1-2 & 2-4 heat exchanger Graphite Block heat exchanger Diagram construction 		
	working		
	 Extended Surface heat exchanger - Diagram construction 		
	working		
	• Scrapped Surface heat exchanger - Diagram, construction.		
	working		
	• Plate type heat exchanger - Diagram, construction, working		
	Evaporation		
	Specific Objectives:		
	Describe working of different evaporators		
	Distinguish between single effect & multiple effect		
_	evaporator		
5	 Calculate area of heat transfer in single effect evaporator 	11	22
	5.1 12 Mortes		
	Definition of automation comparison of Eutomation &		
	• Deminion of evaporation, comparison of Evaporation &		
	 Statement & effects of properties that influences evaporation 		
	• Statement & effects of properties that influences evaporation		

Practicals:

Skills to be developed:

Intellectual Skills:

- 1. To calculate the Physical property (thermal conductivity) of material.
- 2. To calculate the rate of heat flow through different materials.
- 3. To calculate the overall heat transfer coefficient.

Motor Skill:

- 1. To operate different types of heat exchange.
- 2. To control the operating parameters of heat exchange.

List of Practicals:

- 1. Calculate the thermal conductivity of solid metallic rod.
- 2. Calculate the rate of heat loss through composite wall.
- 3. Calculate heat transfer coefficient for natural convection.
- 4. Calculate Heat Transfer coefficient for forced convection.
- 5. Calculate the emissivity of a material.
- 6. Calculate the overall heat transfer coefficient for double pipe heat exchanges for concurrent flow.
- 7. Calculate the overall heat transfer coefficient for double pipe heat exchanges for counter current flow
- 8. Calculate the overall heat transfer coefficient for 1-2 shell and tube heat exchangers
- 9. Calculate the overall heat transfer coefficient for finned tube heat exchangers
- 10. Measures various parameters controlled in a heat exchanger using process simulator.

Learning Resources:

Book	s:		
Sr. No.	Name of Book	Name of Author	Name of Publisher
1	Introduction to Chemical Engg.	Mr. Walter L. Badger & Mr. Julius T. Bachero	Mc Graw Hill International.
2	Unit Operations of Chemical Engineering	Mc Cabe, W. L. Smith & Hariot.	Mc Graw Hill International.
3	Process Heat Transfer	Kern D. Q.	Mc Graw Hill International.
4	Solved problems in mass and heat transfer	G. K. Roy	Khanna Publication

Course Name : Diploma in Chemical Engineering Course Code : CH Semester : Fifth Subject Title : Chemical Process Instrumentation and Control Subject Code : 17561

Teaching and Examination Scheme:

Teac	ching Scl	neme	Examination Scheme					
TH	TU	PR	PAPER HRS	TH	PR	OR	TW	TOTAL
03		02	03	100	50#		25@	175

NOTE:

- > Two tests each of 25 marks to be conducted as per the schedule given by MSBTE.
- > Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work (SW).

Rationale:

Monitoring and control of processes is an important activity of Chemical Engineer. The subject deals with measurement principles of process parameters like temperature, pressure, level, flow, etc. With knowledge of this subject student will be able to control the process parameter as per the desired value for the optimization of the process. The subject also gives exposure to the PID control action and control system like DCS, PLC.

General Objectives:

The students will be able to -

- 1. Understand the principles & working of different measuring instrument.
- 2. Select proper instrument for measuring desired parameters.
- 3. Calibrate and Maintain process control elements.
- 4. Use Controllers, PLC & DCS in process Industry.

Theory:

Topic and Contents	Hours	Marks
Chapter 1: Basic Concepts		
Specific Objectives:		
State static and dynamic characteristics of instrument		
State elements of instruments		
Contents:		
• Measurement and its aim	0.4	0.4
• Functional elements - Primary, Secondary, Manipulating, data	04	04
transferring		
• Static characteristics - definition of Calibration Accuracy Precision		
Repeatability Drift Sensitivity Resolution Dead zone Static error		
 Dynamic Characteristics - definition of Sneed of response fidelity 		
lag Dynamic error		
Chanter 2: Temperature Measurement		
Specific Objectives:		
State various temperature measuring instruments		
 State warloas temperature measuring instruments State methods of measuring temperature by using sensor 		
Contents.		
Temperature Scales:- Centiorade Kelvin Fahrenheit Rankine	06	12
Methods of Temperature Measurement	00	12
 Expansion Thermometer- Bimetallic thermometer Glass thermometer 		
 Expansion Thermonicer's Difference in thermonicer, Orass incrimonicer Electrical temperature measuring instruments RTD thermocounde & 		
• Electrical temperature measuring instruments- KTD, thermocouple &		
Dynamatan Ontion & Dediction		
Pyrometer-Optical & Radiation		
Chapter 5: Pressure Measurement		
Determine pressure in different units		
 Determine pressure in afficient units. State various pressure measuring instrument. 		
 State various pressure measuring instrument Measure pressure using pressure measuring device 		
Contentar		
	08	14
• Units of Pressure		
Methods of Pressure Measurement		
Elastic Pressure Transducer - Bourdon tube, Bellows, Diaphragm		
Force-balance Pressure Gauges - Dead weight tester,		
Electrical Pressure Transduce - Strain gauge, , LVD1		
Measurement of Vacuum - McLeod gauge		
Chapter 4: Level Measurement		
Specific Objectives:		
Know various level measuring instrument		
Measure level using level measuring instruments		
Contents:	06	12
Methods of Liquid level Measurement		
Direct Methods: Sight Glass, Float		
Indirect Methods: Pressure gauge, Air purge, Radioactive, Ultrasonic,		
Capacitive.		
Solid level Measurement.		
Chapter 5: Flow Measurement		
Specific Objectives:	06	16
State various flow measuring instrument	~~	10
Measure flow using flow measuring device		

Contents:		
Method of flow measurement		
Inferential Flow Measurement		
Variable head- flow nozzles, Variable area- Piston type,		
Magnetic meter, Turbine meter		
Ultrasonic flow meter		
Ouantity Flow meter:		
• Positive displacement meters- Rotating vane meter.		
 Mass Flow meters: Thermal flow meter 		
Chapter 6: Process Control System & Controller		
Specific Objectives		
 State concepts of control system 		
 State effect of control action on parameter such as temperature 		
pressure level flow etc		
Contents:	08	14
Open, closed loop system, cascade control system, Servo & Regulatory		
operation.		
Definition of system - input step, ramp, sinusoidal, pulse.		
Selection of Control Action -On-Off, proportional, integral, derivative.		
Construction and working of Pneumatic Controllers - P, PI, PD, PID		
Chapter 7: Control Valve		
Specific Objectives:		
State control valves & understand control valve		
> Select control value for particular application		
Contents :	0 <i>C</i>	
• Types of control valve – air to open, air to close	06	14
• Valve characteristics - Linear, Equal % Ouick opening		
• Valve types- single seated Double seated		
 Valve actuators 		
 Valve selection and sizing 		
Chapter 8: Computer-Aided Measurement & Control System		
Specific Objectives:		
 State concents of computer aided control system 		
 State concepts of computer area control system State applications of PLC DCS 		
Contents:		
Elements of computer-aided measurement and control	04	14
Computer aided process control Architecture - Distributed Digital Control	•••	
Architecture		
Computer- aided process control hardware.		
Programmable Logic controller (PLC) Architecture		
Distributed Control System (DCS) Architecture.		
Total	48	100

Practical: Skills to be developed:

Intellectual Skills:

To verify the principles, laws, using given measuring instruments under different conditions.

- To read and interpret the graph.
- To interpret the results from observations and calculations.

Motor Skills:

- Proper handling of measuring devices.
- Measuring physical quantities accurately.
- To observe the phenomenon and to list the observations in proper tabular form.
- To adopt proper procedure while performing the experiment.
- To plot the graphs.

List of Practicals:

- 1. Use of Thermocouple or Resistance Temperature Detector or Thermistor to measure the temperature of water bath and understand the characteristics of Thermocouple or Resistance Temperature Detector or Thermistor.
- 2. Measure of high temperature using radiation or optical pyrometer. Find the range of the optical or radiation pyrometer
- 3. Use of Linear Variable Differential Transformer (LVDT) to measure pressure.
- 4. Calibrate the pressure gauge using the dead weight pressure tester
- 5. Measure the flow rate by magnetic flow meter

Practice Experiment

- 6. Understand the concept of temperature controller with ON-OFF controller
- 7. Understand the characteristics of control valve.
- 8. Understand the operation of DCS /PLC through industrial visit.
- 9. Determine the liquid level in vessel by capacitance method
- 10. Measure the pressure using stain gauge transducer, Find the minimum and maximum range for the given transducer

Learning Resources:

Books:

Sr. No.	Author	Title	Publisher
1.	Industrial Instrumentation and control	S. K. Singh	Tata McGraw Hill Publishing Company Ltd.
2.	Instrumentation	Franklyn Kirk & Nicholas Rimboi	D. B. Taraporevala Sons & Co Private Ltd
3.	Industrial control and Instrumentation	W. Bolten	Universities Press (India) Ltd
4.	Process control	Coughner	McGraw Hill Publishing Company Ltd
5.	Fundamentals of Industrial Instrumentation	Barua	Wiley India Pvt. Ltd.

Course Name : Diploma in Chemical Engineering Course Code : CH Semester : Fifth Subject Title : Chemical Reaction Engineering Subject Code : 17562

Teaching and Examination Scheme:

Tea	ching Sch	neme	Examination Scheme					
TH	TU	PR	PAPER HRS	TH	PR	OR	TW	TOTAL
03	01		03	100				100

NOTE:

- > Two tests each of 25 marks to be conducted as per the schedule given by MSBTE.
- > Total of tests marks for all theory subjects are to be converted out of 50 and to be entered in mark sheet under the head Sessional Work (SW).

Rationale:

This subject outlines the basic principles of kinetics, reactor design and its selection. These principles are useful in operating the reactors in the industries. This subject enables students to have and idea about various types of reactors and catalyst used in the process industry.

General Objectives:

Students will be able to

- 1. Decide the feasibility of a chemical reaction.
- 2. Understand the fundamentals of reactor design and specific applications of different types chemical reactors.

Theory Content:

Chapter No.	Topic and Contents	Hours	Marks
	Topic 1 : Thermodynamics		
01	 Specific Objectives: > Understand effect of process parameters on extent of reaction. > Decide the feasibility of a chemical reaction Contents: (12 Marks) Internal energy, enthalpy, entropy, Gibbs free energy chemical potential and fugacity – definitions and notation. Entropy changes for ideal gas processes and phase change. Gibbs free energy change and the feasibility of a chemical reaction from free energy change. Relationship between ΔG and K and its derivation. Chemical equilibrium, its characteristics K_f, K_p, K_c and K_y and the relationship among them. Vant Hoff equation and variation of equilibrium constant with temperature. To obtain the relationship between conversion and thermodynamic equilibrium constant for first order and second order reversible reaction. 	14	18
	1.2 Numericals on entropy change for ideal gas processes, Kp, Kc		
	and Ky. (06 Marks)		
02	 Specific Objectives: State Arrhenius law Calculate the rate constant and activation energy Contents: 2.1 (08 Marks) Rate of reaction, rate equation/law, factors affecting the rate of reaction, classification of reactions, reaction rate, rate constant. Concentration dependent term of a rate equation, elementary and non-elementary reactions, molecularity and order of reaction, chain and non-chain reactions. Types of intermediate in non-chain reactions. 2.2 Temperature dependency of rate constant based on Arrhenius theory Collision state theory Transition state theory 2.3 Problem based on Arrhenius' law – calculation of k and E and rate of reaction. (08 Marks) 	08	22
03	 Topic 3 : Interpretation of Batch reactor data Specific Objectives: ➤ Analyse the kinetic data ➤ Derive the integrated rate expressions for different order 	12	24

	reactions.		
	Find the rate expression for a given reaction		
	Contents: (10 Marter)		
	 Method of interpretation of kinetic data, constant-volume botch reactor, analysis of total pressure data. Differential and 		
	integral methods of analyzing kinetic data.		
	• Integral method of analysis of data, integrated rate equations for zero order, first order and second order irreversible		
	reactions and first order reversible reaction in term of concentration and conversion.(constant volume)		
	• Overall order of irreversible reactions from half-life, n th order reaction.		
	• Differential method of analysis of data		
	3.2 (14Marks)		
	Concept of Variable volume batch reactor, fractional change		
	order reactions		
	3.3 Concepts of autocatalytic, parallel & series reactions		
	Topic 4 : Introduction to Reactor design		
	Specific Objectives:		
	State concept of ideal reactors		
	 Derive performance equations for ideal reactors 		
	Calculate the reactor volume for a specified conversion		
	Contents: 4.1 Types of reactors material balance equation relationship		
	4.1 Types of feations, material balance equation, feationship between C, and X, for constant density and changing density		
	batch and flow systems (04 Marks)		
04	4.2 Definition of Space time, Space velocity, and holding time (04	10	24
	Marks)		
	• Performance/design equations for ideal batch reactor, mixed		
	flow reactor and plug flow reactor in terms of concentration		
	and conversion and graphical representations		
	• Size comparison of reactors, advantages and disadvantages		
	of batch reactor, mixed flow reactor v/s plug flow reactor.		
	4.3 Numericals based on the above subtopics. (12 Marks)		
	4.4 Multiple reactors (04 Marks)		
	Topic 5 : Catalysis		
	Specific Objectives:		
	 State characteristics of catalysed reaction 		
	Distinguish between fixed bed reactor and fluidized bed		
	reactor		
05	Contents:	0.4	10
05	• Concent of Catalysis catalyst classification of catalytic	04	12
	reactions catalytic reactions/catalysis		
	• Characteristics of catalytic reactions, desired properties of		
	catalyst		
	• Methods of catalyst preparation, promoters, inhibitors and		
	accelerators		

• Catalyst poisoning and types of catalyst poisons,		
deactivation and regeneration		
 Steps involved in solid catalyzed gas phase reactions 		
5.2 Fluidized bed reactors, fixed bed reactors and difference		
between them, their merits and demerits.		
Total	48	100

List of Assignments:

Introduction to chemical kinetics Numericals on Arrhenius law and activation energy	02
 a) Numericals on unimolecular first order reaction b) Numericals on bimolecular second order reaction c) Numericals on half life d) Numericals on zero order reaction for constant volume reaction systems. 	01 02 02 01
3 Introduction to reactor design (Find volume & conversion) a) Numericals on batch reactor b) Numericals on Plug flow reactor c) Numericals on mixed flow reactor Total	02 02 03

Learning Resources:

Books:

Sr. No.	Name of Books	Name of Author	Publication
01	Chemical Reaction Engg.	Octave Levenspiel	Wiley Eastern Ltd. New Delhi
02	Elements of Chemical Engg.	H. Scott Fogler	Printice Hall of India Pvt. Ltd., New Delhi
03	Chemical Engg. Thermodynamics	Smith and Van Ness	McGraw Hill, New York
04	Chemical Engg. Thermodynamics	K.V. Narayanan	Printice Hall of India Pvt. Ltd., New Delhi
05	Chemical Engg. Kinetics	Smith J M	McGraw Hill, New York

Course Name : All Branches of Diploma in Engineering & Technology

Course Code : EJ/EN/ET/EX/EV/IC/IE/IS/MU/DE/ME/PG/PT/AE/CE/CS/CR/ CO/CM/IF/ EE/EP/CH/PS/CD/ED/EI/CV/FE/FG/IU/MH/MI/TX/TC/DC/AU Semester : Fifth for EJ/EN/ET/EX/EV/IC/IE/IS/MU/DE/ME/PG/PT/AE/CE/CS/CR/ CO/CM/IF/EE/EP/CH/PS/AU and Sixth for CD/MH/IU/CV/FE/FG/MI/ ED/EI/DC/TC/TX

Subject Title : Behavioural Science

Subject Code : 17075

Teaching and Examination Scheme:

Teaching Scheme		neme			Examinati	on Scheme		
TH	TU	PR	PAPER HRS	TH	PR	OR	TW	TOTAL
01		02		-		25 #	25 @	50

Rationale:

With increased globalization and rapid changing business expectations, employers are looking for wide cluster of skills to cater to the changing demand. Personality traits and soft skills are playing a key role in a student's career in this changing scenario. Corporate houses look for soft skills that supplement hard skills.

Addition of behavioural science in curriculum is intended to enhance the efficiency of a person so that he can contribute to overall growth of organisation. It aims at developing insight into leadership, team building, motivation, interpersonal relationship, problem solving, decision making and aspects of personality in a technician's profile. Addition of the topic of organizational culture will further mould him/ her in the organisational role.

This subject of 'Behavioural Science' provides a broad base in which a technician can develop a successful career in the world of work.

General Objectives:

After studying this subject, the students will be able to:

- 1. Develop him/her as Team leader.
- 2. Use self-motivation and motivate others.
- 3. Build a team and develop team spirit among the team members.
- 4. Improve the interpersonal relationship skills.
- 5. Learn Problem solving and decision making skills.
- 6. Discuss a particular topic in a group and face the interview.

Theory:

	Topic and Contents	Hours
To	pic 1: Leadership	
1.1	Management Education-History, Development, Importance, Areas of	
	specialization, need and importance of behavioural science	
1.2	Meaning and Types of Leaders, Qualities of leader, Examples	02
1.3	Leadership- Definition, importance, leadership in various organizations	
1.4	Leadership styles-task -people matrix. Persuasive, Authoritative, Democratic,	
	Delegative Leadership styles. Maturity of followers, situational leadership	
To	pic 2: Motivation	
2.1	Meaning	
2.2	Importance of Motivation	
2.3	Types of Motivation- Intrinsic, Extrinsic, Examples	02
2.4	Maslow's motivation theory- pyramid of needs, individual and industrial	
	applications	
2.5	Tips for Motivation	
Тој	pic 3: Emotional Intelligence	
3.1	Major concepts - emotion, families of emotion, components of emotional	
	expressions	02
3.2	Emotional intelligence, cognitive intelligence	
3.3	Basic emotional competencies	
To	pic 4: Team Building	
4.1	Team- Need, Definition, Difference between group and team	
4.2	Characteristics of a good team	
4.3	Steps in team formation- forming, norming, storming, performing,	
	adjourning	03
4.4	Roles of team members	
4.5	Characteristics of a good team member	
4.6	Types of teams-Work, mgmt, cross functional, quality circle, self-managed	
	team	
To	pic 5: Conflict Resolution	
5.1	Definition, types (interpersonal, intrapersonal, groups), indicators of	
	conflicts	
5.2	Sources of conflict - ego, poorly defined authority and responsibility, power,	
	interests, greed, difference in value system, complex work situations	02
5.3	Skills for conflict resolution	03
5.4	Steps in conflict management -Mapping of conflict, negotiation- steps in	
	negotiation,	
5.5	Styles of conflict management- collaborating, competing, cooperating,	
	avoiding, compromising	
To	pic 6: Decision Making	
6.1	Importance of decision making	02
6.2	Definition Characteristics of good decision	02
6.3	Characteristics of good decision	

6.4	Types of decisions- programmed, non programmed, strategic, tactical,	
	impulsive	
6.5	Group decision making	
6.6	Steps of decision making	
Тор	ic 7: Interview Techniques	
7.1	Job search opportunities	
7.2	Development of résumé' and cover letter- essentials of a good résumé',	
	contents of Résumé', layout of résumé', cover letter	
7.3	Group discussion- objectives, do's and don'ts for effective participation,	02
	evaluation parameters, suggested topics	02
7.4	Psychometric tests- Aptitude test, guidelines for preparations for aptitude test,	
	Personality test	
7.5	Personal interview-guidelines for preparing for job interviews, common	
	questions	
	Total	16

Practical: Skills to be developed:

Intellectual Skills:

- Develop ability to find his strengths
- Select proper source of information.
- Follow the technique of time and stress management.
- Set the goal.

Motor Skills:

- Follow the presentation of body language.
- Work on internet and search for information.
- Prepare slides / transparencies for presentation.

List of Assignments:

01	Case study: Employee motivation and leadership.				
02	To build a tower from a given material as a team activity				
03	To prepare Jigsaw puzzles (common shapes) from the given jigsaw pieces as a team.				
04	Case study on conflict Resolution				
05	Assess your style of conflict resolution				
06	Decision making activity: of Selection of the best suitable company.				
07	Participate in a guided group discussion				
08	Assessment of self-aptitude in numerical computation, estimation, data interpretation, mechanical, spatial and abstract reasoning				
09	Assessment of self-aptitude in Verbal ability and data checking.				
10	Development of résumé and covering letter				

Note: Subject teacher shall guide the students in completing the assignments based on above practicals.

Learning Resources: Books:

Sr. No.	Author	Name of Book	Publication
1	Subject Experts-MSBTE	Handbook and assignment book on Development of Life Skills-II	MSBTE
2	Dr. Kumkum Mukherjee	Principles of management and organizational behaviour	Tata McGraw Hill Education Pvt Ltd.
3	Dr.T.Kalyana Chakravarti Dr.T.Latha Chakravarti	Soft Skills for Managers	Biztantra
4	Barun K Mitra	Personality Development and soft skills	Oxford University Press
5	Priyadarshini Patnaik	Group discussion and interview skills	Foundation Books

Course Name : Diploma in Chemical Engineering Course Code : CH Semester : Fifth Subject Title : Entrepreneurship Development and Industrial Project Subject Code : **17073**

Teaching and Examination Scheme:

Teac	hing Scl	heme	Examination Scheme					
TH	TU	PR	PAPER HRS	TH	PR	OR	TW	TOTAL
01	01	02					25@	25

Rationale:

Globalization, liberalization & privatization along with revolution in Information Technology, have thrown up new opportunities that are transforming lives of the masses. Talented and enterprising personalities are exploring such opportunities & translating opportunities into business ventures such as- BPO, Contract Manufacturing, Trading, Service sectors etc. The student community also needs to explore the emerging opportunities. It is therefore necessary to inculcate the entrepreneurial values during their educational tenure. This will help the younger generation in changing their attitude and take the challenging growth oriented tasks instead of waiting for white- collar jobs. This subject will help in developing the awareness and interest in entrepreneurship and create employment for others.

Objectives:

Students will be able to

- 1) Identify entrepreneurship opportunity.
- 2) Acquire entrepreneurial values and attitude.
- 3) Use the information to prepare project report for business venture.
- 4) Develop awareness about enterprise management.

'G' Scheme

Topics:

Topic	Name of Topic				
	Entrepreneurship, Creativity & Opportunities				
	• Concept, Classification & Characteristics of Entrepreneur				
	• Creativity and Risk taking, Risk Situation, Types of risk & risk				
	takers.				
	Business Reforms.				
	Process of Liberalization.				
01	Reform Policies.	03			
	Impact of Liberalization.				
	• Emerging high growth areas.				
	• Business Idea Methods and techniques to generate business idea.				
	• Transforming Ideas in to opportunities transformation involves				
	• Assessment of idea &Feasibility of opportunity				
	SWOT Analysis				
	Information and Support Systems				
	 Information Needed and Their Sources: 				
	 Information related to project, Information related to support 				
02	system, Information related to procedures and formalities	02			
02	Support Systems	02			
	Small Scale Business Planning, Requirements.				
	Govt. & Institutional Agencies, Formalities				
	 Statutory Requirements and Agencies. 				
	Market Assessment				
03	Marketing -Concept and Importance				
05	 Market Identification, Survey Key components 	02			
	Market Assessment				
	Business Finance & Accounts				
	Business Finance				
	• Cost of Project				
	• Sources of Finance				
	• Assessment of working capital				
	• Product costing				
04	• Profitability	03			
04	• Break Even Analysis	05			
	Financial Ratios and Significance				
	Business Account				
	Accounting Finiciples, Methodology Dook Kaoping				
	DOUK Neepilly Financial Statements				
	Concept of Audit				
	• Concept of Audit				

	Business Plan & Project Report		
	Business plan steps involved from concept to commissioning		
	Activity Recourses, Time, Cost		
	Project Report		
0.5	Meaning and Importance	02	
05	Components of project report/profile (Give list)	03	
	5.3) Project Appraisal		
	1) Meaning and definition		
	2) Technical, Economic feasibility		
	3) Cost benefit Analysis		
	Enterprise Management And Modern Trends		
	Enterprise Management:		
	• Essential roles of Entrepreneur in managing enterprise		
	Product Cycle: Concept and importance		
	Probable Causes Of Sickness	02	
06	Quality Assurance: Importance of Quality, Importance of testing	05	
	E-Commerce: Concept and Process		
	Global Entrepreneur		
	• Assess yourself-are you an entrepreneur?		
	• Prepare project report and study its feasibility		

List of Assignments:

- 1. Write the SWOT Analysis required for an successful entrepreneur.
- 2. Collect the required information, formalities and supporting systems for starting a small scale business.
- 3. Collect information regarding key parameters required for market analysis of an electrical industry.
- 4. Search for current available sources of finance to start a new business and write a report.
- 5. Write a report on different accounting methods, financial statements and audit.
- 6. Write a report on preparing a good business plan.
- 7. Collect information on E-commerce system and write a report on how it is useful for entrepreneurs.
- 8. Prepare a report on how to become a successful entrepreneur?

Learning Resources: 1) Books:

Sr. No	Author	Title	Publisher
1	J.S. Saini B.S.Rathore	Entrepreneurship Theory and Practice	Wheeler Publisher, New Delhi
2	Prepared by Colombo plan staff college for Technician Education.	Entrepreneurship Development	Tata McGraw Hill Publishing Co. Ltd. New Delhi.

2	J. B. Patel	A Manual on How to	EDI STUDY MATERIAL
3	D. G. Allampally	Prepare a Project Report	Near Village Bhat, Via Ahmadabad
4	Gautam Jain Debmuni Gupta	New Initiatives in Entrepreneurship Education & Training	Airport & Indira Bridge, P.O. Bhat 382428, Gujrat, India P.H. (079) 3969163, 3969153 E-mail : ediindia@sancharnet.in/olpe@ediindia .org Website : http://www.ediindia.org
5	Schaper, Michael Volery	Entrepreneurship- Small Business	Wiley India,2011
6	Alpana, Trehan	Entrepreneurship	Dreamtech, 2011

2) Video Cassettes:

No	Subject	Source	
1	Five success Stories of First	EDI STUDY MATERIAL	
	Generation Entrepreneurs	Ahmadabad (Near Village Bhat , Via Ahmadabad	
2	Assessing Entrepreneurial	Airport & Indira Bridge), P.O. Bhat 382428,	
	Competencies	Gujrat,India	
3	Business Opportunity Selection and	P.H. (079) 3969163, 3969153	
	Guidance	E-mail : <u>ediindia@sancharnet.in/olpe@ediindia.org</u>	
4	Planning for Completion & Growth	Website : http://www.ediindia.org	
5	Problem Solving-An Entrepreneur		
	Skill		

PART B) Industrial Project

Following activities related to project are required to be dealt with, during this semester

- 1. Form project batches & allot project guide to each batch. (Max. 4 students per batch)
- Each project batch should select topic / problem / work by consulting the guide & / or industry. Topic / Problem / work should be approved by Head of department.
- 3. Each project batch should prepare action plan of project activities & submit the same to respective guide.
- 4. At the end of semester, each project batch should submit the action plan and abstract of the project along with list of materials required if project involves fabrication or other facilities required in other kinds of project.
- 5. Action Plan should be part of the project report.
- 6. Each group member shall write assignments on the action plan prepared for the project for this semester (half of the project work). The assessment of the assignments will be considered for next semester as a total term work.

Group	Project
-------	---------

Course Name : Diploma in Chemical Engineering Course Code : CH Semester : Fifth Subject Title : Professional Practices-III Subject Code : 17074

Teaching and Examination Scheme:

Teaching Scheme			Examination Scheme					
TH	TU	PR	PAPER HRS	TH	PR	OR	TW	TOTAL
		03					50@	50

Rationale:

Due to globalization and competition in industrial services, sectors, selection of candidates for job is based on campus interview and competitive test.

While selecting the candidates in general confidence, ability to communicate attitudes are the basic concepts.

The purpose of introducing subject of professional practice is to provide the opportunity for student to undergo various objectives so as to develop his confidence and communication skills. Industrial visits, group discussions, seminar presentations, expert lectures are introduced in the subject to provide maximum participation of students in learning process.

General Objectives:

Students will be able to:

- 1. Acquire information and data of different industries
- 2. Deliver the information and knowledge required to develop awareness about latest trends in chemical industries.
- 3. Present seminar on selected topic.
- 4. Prepare report on industrial visit.

Guidelines for implementing professional practices

- In order to implement contents of professional practice effectively it is necessary for the department to plan the activities for full semester. Minor modifications may be done if required. Following are guidelines for the same.
- Activities to be guided and monitored by the faculty of the concerned department only.
- Involve students in related activities to a great extent to develop learning to learn skills.
- Arrange industrial visits and expert lectures on convenient days. Periods of PP may be allocated to concerned faculty members whose periods may be lost.
- Ensure to carry out all activities suggested.

Practical:

Contents	Hours
1. Industrial Visits	
Industrial visits to be arrange and report of same should be submitted by individual	
student as a part of term work.	
Visit any two chemical industries available such as	
a. Dairy industry	
b. Sugar industry	
c. Starch industry	
d. paper industry	16
e. Petro chemical industry	16
f. Solvent – Extraction plant	
Revalent content of report	
Manufacturing process, it's flow diagram, various instruments used for	
measurement of temperature, pressure, flow, level. Their types and ranges.	
Type of equipments used in manufacturing processes such as heat exchanger	
reactor dryer distillation column extractor absorber boiler cooling tower and	
effluent treatment arrangement in industries	
2 Seminar Presentation	
Student should present a seminar on a topic given below or any other topic given	
by lecturer or topic related to industrial visit	
a Dairy industry Pastuerasation of milk drying process of milk powder	
a. Daily industry – rastuciasation of mink, drying process of mink powder.	
o. Storah industry – Crystallization of Sugar, alcohol from molasses	
d. Detreshemical industry – Erectional distillation presses. Automatic controls	12
d. Petrochemical industry – Fractional distination process, Automatic controls	
in distination column, storage of performing chemicals, safety procedure	
used in petrochemical industries.	
e. Solvent extraction plant – Extraction process, recovery of solvent	
The report should be written and submitted individually in advance in a specific	
format before seminar and it should be presented in 10 min.	
3. Group Discussion	
Students should discuss in a group of $8 - 10$ to be monitored by faculty member.	
The student should have to write a brief report on the same and submit it as a term	
work.	
Topics such as given below or topic selected by concern teacher	14
a. Effect of chemical industries waste on global worming	
b. Benefits of energy audit of industries	
c. Effect of global warming and recent effort to control global warming	
d. Renewable energy sources	
4. Expert Lecturers	
Minimum two expert lectures based on chemical engg. field to be arranged.	
Report prepared by individual student and submitted to the concern teacher as a	
part of term work. Topics selected by expert lecturer or topic such as given below	0.6
a. Safety in Petrochemical industry	06
b. Waste water management	
c. Recovery of energy in thermal power station	
d. Fermentation industry – It's scope and application	
Total	48

OR

Industrial Training (Optional)

- Students who have completed industrial training in summer vacation after 4th Semester will be granted exemption for activities related to topic 1 to 4.
- These students shall submit report of Industrial training signed and certified by authorities from Industry. Student will give seminar on industry training attended by him.
- Evaluation will be done on seminar and report submitted by student.

Note:

For the students who have undergone industrial training of four weeks duration in the summer vacation of fourth semester will be assessed as follows:

- 1. Industrial Training report duly certified by competent authority in the industry: **30 Marks**
- 2. Seminar on industrial training:

20 Marks